Seymour’s Conjecture on 2-Connected Graphs of Large Pathwidth
نویسندگان
چکیده
منابع مشابه
Seymour's conjecture on 2-connected graphs of large pathwidth
We prove the conjecture of Seymour (1993) that for every apex-forest H1 and outerplanar graph H2 there is an integer p such that every 2-connected graph of pathwidth at least p contains H1 or H2 as a minor. An independent proof was recently obtained by Dang and Thomas (arXiv:1712.04549).
متن کاملCircumference and Pathwidth of Highly Connected Graphs
Birmele [J Graph Theory 2003] proved that every graph with circumference t has treewidth at most t − 1. Under the additional assumption of 2-connectivity, such graphs have bounded pathwidth, which is a qualitatively stronger conclusion. Birmele’s theorem was extended by Birmele et al. [Combinatorica 2007] who showed that every graph without k disjoint cycles of length at least t has treewidth O...
متن کاملFrom Pathwidth to Connected Pathwidth
It is proven that the connected pathwidth of any graph G is at most 2 · pw(G) + 1, where pw(G) is the pathwidth of G. The method is constructive, i.e. it yields an efficient algorithm that for a given path decomposition of width k computes a connected path decomposition of width at most 2k + 1. The running time of the algorithm is O(dk2), where d is the number of ‘bags’ in the input path decomp...
متن کاملErdös Conjecture on Connected Residual Graphs
A graph G is said to be F-residual if for every point u in G, the graph obtained by removing the closed neighborhood of u from G is isomorphic to F. Similarly, if the remove of m consecutive closed neighborhoods yields Kn, then G is called m-Kn-residual graph. Erdös determine the minimum order of the m-Kn-residual graph for all m and n, the minimum order of the connected Kn-residual graph is fo...
متن کامل-λ coloring of graphs and Conjecture Δ ^ 2
For a given graph G, the square of G, denoted by G2, is a graph with the vertex set V(G) such that two vertices are adjacent if and only if the distance of these vertices in G is at most two. A graph G is called squared if there exists some graph H such that G= H2. A function f:V(G) {0,1,2…, k} is called a coloring of G if for every pair of vertices x,yV(G) with d(x,y)=1 we have |f(x)-f(y)|2 an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Combinatorica
سال: 2020
ISSN: 0209-9683,1439-6912
DOI: 10.1007/s00493-020-3941-3